CHM 101 EXAM III

Show all calculations with units and proper number of significant figures! Write in clear and complete sentences. **GOOD LUCK!!!!**

1. Consider the boxes below each with 10 atoms of an inert gas.

He atoms Kr atoms

Is the box realistic? Explain why or why not.

(6)

Circle the correct answer:

(9)

If both boxes were at the same temperature, then their

kinetic energies are equal.

velocities are equal.

masses are equal.

At a constant temperature, all 10 He atoms have the same velocity.

True

False

How could you get the average velocity in the two boxes to be equal?

$$T_{He} > T_{Kr}$$

$$T_{He} = T_{Kr}$$

$$T_{He} < T_{Kr}$$

where $\ensuremath{\mathsf{T}}$ is temperature

2. Complete the table below. Electronegativities are given on the last page of the exam. (25)

Compound	Lewis Dot Structure	Molecular Geometry		tron ation	Polar or Non-polar
CH ₂ Cl ₂			С	CI	
			С	Н	
PCI₃			Р	CI	
H₂CO C in center			С	0	
TeCl ₆			Te	CI	
XeF ₄					

3.	Which freon diffus	es faster:	CF ₂ CI ₂	or	CFCI ₃	(10)
Calcula	ate the relative rate	of diffusion fo	or the two fre	ons at room te	emperature.	
	temperature for the ion respond?	e two freons w	ere to decrea	se, how would	the relative ra	nte of
4. mass o	A bubble of air was of air (MM _{air} = 29.0 g	• • • • • • • • • • • • • • • • • • • •				
5.	What is the intermo $H_2S(I)$	olecular force (H₂O (I)	(I MF) operatii CH4 (I)	ng in the follov NaCl (l)	ving liquids? Cl ₂ (I)	(15)

6. The table below gives the water temperature and dissolved oxygen (DO) solubility monthly averages over a year for Shepardstown on the Potomac River. (25)

Month	Temperature	DO	
Jan.	2.94°C	12.86 mg/L	
Feb.	3.03	13.24	
March	6.96	12.28	
April	12.21	10.53	
May	17.53	9.37	
June	22.4	8.03	
July	26.14	7.87	
August	25.42	7.51	
Sept.	21.73	7.85	
Oct.	15.62	9.77	
Nov.	9.01	11.13	
Dec.	5.71	12.23	

What time of year (month) is DO highest?

Plot a graph of DO as a function of temperature on your graph calculator, sketch and label the plot below.

Perform a linear regression on the data and record the equation in terms of the variables studies (not x and y).

Describe the goodness of fit.

What is the solubility of oxygen at 20°C? Describe how you got the value.